E-Leader Prague 2015

Agile Approach and MDA in Softwar e Development Process

JaroslavaKnieZova, Ing. PhD.
Associate Professor
Comenius University

Faculty of Management
Department of Information Systems
Bratislava, Slovakia

Abstract

There are several approaches defined in softwarel@@nent process. Each of them
usually gives the rules and steps of developingtiivare for the customer in a good quality
and also in as quickly as possible way. Achievimg brings the satisfaction to the customer
as he gets effective software solution and alsthéosolution provider as he can lower the
costs of software development by shortening theldgwment time and this way increases his
income. At present the agile approach is very commasoftware development companies.
Using MDA in developing process should optimize tloeling process as the analytical and
design models should be transformed into the cdtiere can be seen some differences
between these two approaches. In agile approach mimlimum of modeling is used in
development process. On the other side for optumelg of MDA the detailed models have
to be created. This article contains descriptioth @mparison of these two approaches. The
possibility of using both of these approaches ie @noject as well as the advantages or
disadvantages of them are described too.

Modeling in Development Process

Several approaches for information system developm®cess have been defined. The used
approach influences the methodology, which hastaded in development process. It can be
said that the first significant moment in inforneattisystem modeling was the formation of
traditional methodologies. These methodologies aianphases of the development process
and usually several phases at the process beginaimsgist of the modeling works. According
to these methodologies the models of informatistesy should be always created before the
coding works start. This should assure that notewtdil costs appear during the development
process when the development team comes to the dwtemled information. Detailed
analysis and design should be done before codingll sletails are defined in the models and
the coding can be done quickly then. Although tlethodologies were changing through the
history with the aim of achieving lowering costs the solution provider and also the price
for the customer with keeping the result qualitypdeling of information systems has stayed
in the phases of the development process untigile approach came (described later in this
paper).

According to RUP methodology the phase, which mu$ed on the modeling, i.e. Analysis
and Design phase, is most important phase of tbeeps, because if this phase is done in
good details, the later coding is very quickly asfdlow costs. This methodology has its

E-Leader Prague 2015

evaluation cycle as after each phase of the prtjectinished works are evaluated according
the previously defined criteria. And the evaluatafter Analysis and Design phase is very
important too, because on this evaluation and #astbn based on it the whole project
success depends.

It can be said that only UML language is used fadgling at present. The language was
defined so as to unify the language of the analgsts their models. UML should be used
together with the chosen methodology, i.e. the ldgweent team should follow the phases of
the methodology and use UML for the models creatiitgin them.

Model Driven Architecturein Development process

Model driven architecture (MDA) is the approachdevelopment process, which is based on
the UML language and is said to be the future df fusing UML in development process
[1]. The main idea of MDA is that the software puotlis the result of models transformation
process. According to this approach several modktald be created with the defined
sequence of their transformation. At the end os tprocess, the last model should be
transformed to the source code. The suitable CASinfputer Aided Software Engineering)
system is needed and supposed to be used.

In this approach the main works are done when nugléh the development process and
therefore models creation is supposed to requirprhaof the time and finance project
calculation. The model which is the basis for ttensformation to the source code has to
contain all details and all defined solutions.

The models created in MDA (Figure 1) approach are:

A. CIM — Computer Independent Model

In this model the basic system requirements areefadd project dictionary and the main
system use cases are defined. There is a minimuooraputer processing details in this
model and the information should be modeled oncase (conceptual) level.

B.PIM — Platform Independent Model

This model is created when more details are adillked.being built system is modeled in
more details including the way of tasks processirtge use cases are modeled in details of
the way how they will be done by the system. Thritkeare captured at logical view, i.e. all
data and algorithm details abstracted from platfepecific processing.

C.PSM-Platform Specific Model

This model is worked out for the platform which Mok used. The code — level details are
included in the models. This model is the last mn#he transformation and is used for code
generation.

E-Leader Prague 2015

— — —
~
Computer o

Platform 7
Independent Model [<<trace>> N |ndependent Model { Mapping Platform Specific
(cim) | Model (PSM)

(PIM)

-

Generatmnf

[x]
EF

&

@(‘Jmo“ewm

Figure 1Models in MDA

As the MDA architecture is supposed to be used wfign in the future for model based
application developing and the majority of the pobjworks will cover modeling, there are
many publications with attention to this problenor(fexample [4], [5]). Developing an

application fully MDA way means using CASE tool generate source code from the
detailed models and this means minimum coding asmdmum modeling.

Agile Approach in Development Process

It can be said that the 2001 year and the defmitob the Manifesto for Agile Software
Development is the beginning of the agile appraacsoftware development. The Manifesto
for Agile Software Development contains principfes agile developing which can help to
achieve the project aims given by the developmesint The aims in agile development are
based mainly on one factor and this is the timeleAdevelopment means developing the
application in as short time as possible. Althotigh result is not complete and/or is not of
required quality the time is the main (and oftea ¢imly) factor of the project success. As the
time has to be shortened as much as possible, ebthe project works are skipped. This
approach was formed based on the idea of a grogpogrammers, according to whom the
system modeling spends a lot of time and producesesult for the customer (only for the
development team members) and therefore it showdd niinimized. Although the
programming works will be reworked because of natihg solved the details in models,
models are not created in this approach or argemesery minimally and without details,
only on the conceptual level.

It can be said that developing of an applicatiomgishe agile approach brings more
programming and less modeling through the projdet dycle. Agile approach is very
common at present and there are lots of compasieg it. There are methodologies, which
support this approach, for example SCRUM. Develagnite cycle in agile methodology is
based on very often usually daily organized mestiog which the work details needed on
that day are discussed. It is very important that customer and future system users are
present at these meetings and every team membeceadperates on the discussed project

E-Leader Prague 2015

part should be present too. It can be said thaetheeetings replace the detailed modeling the
actual particular requirements are defined andwthg of implementation of the particular
tasks are on the programmer who implements them.

Agile development
disposable time + offered money =>
Delivered functionality

Traditional development
Required functionality =>
estimated time + asked money

Figure2Principle of Agile and TraditionalDeveloprhen

Understanding the agile approach means knowing wamterstanding its main principles

(Figure 2). In traditional development the firststwas discussing the required functionality
of the future system and then the needed time amteynwere derived. In the agile approach
the time and money are given at the beginning bed the system functionality, which is to

be delivered, is derived from these constants.

MDA and Agile development - comparison
According to the characteristics about these twar@gches, given above, it can be defined

one main difference between them. As the MDA apghtoapresent creating detailed models,
this kind of project works are the main part of fheject life cycle and can spend most time
and money as well. Most team members should bgstsalvho create these models. On the
other site, the agile approach means very miniméith® modeling and maximum of the
programming, including refactoring instead. Thisdally a big difference between these two
approaches which influences other important falasfind out and describe these facts as the
advantages or disadvantages it is needed to diéfeneeed and the position of the modeling
in the project lifecycle. The reasons (the aimniadel (and take the advantages of modeling)
can be defined as:

1. Discuss and solve problems
Models are created so as to catch the informatonitethe future system. The analysts
design and discuss the solution with the customertlae accepted issues are described in the
models. These models are the starting point foptbgrammers. The advantages are:

» There are more people cooperating on one probldra. cistomer as future system
user plays very important role in this process lsdopinion is the key factor for the
project success. When creating models, the custeroeinion can be captured in
these models. Also the other team members can #iege models and this way they
can cooperate on the solution. The model, which eraated this way, keeps the
solution as the result of customer’s and anyoregsitmember discussion.

* The models keep accepted solution. In this caseethdt of the analytic works is ‘on
the paper and it is not possible to ignore onceeed solutions for other team
members and for the customer as well.

E-Leader Prague 2015

» Keeping the historical information. Sometimes swdvisome problems can be
postponed and the development team members continwerking on these issues
after some (sometimes longer) time. As the preWodsscussed details are in the
models, the team members can look through the rmaddstead of discussing these
issues once more.

2. Change management
It can be said that no project without any changés requirements exists. It is very usual
that the customer changes the requirements dummg@rject works. The development team
has to accept these changes but it is possible ifaisdgood because of cost control) to
discuss the rules of such changes. Any rule isealgpetween the development team and the
customer, it will be always much easier to man&gent when the changes are defined in the
models.

There can be also the disadvantages of modelingetkés:

1. Time spending
Creating models requires time. The analysts hadéstauss all problems, design the solutions
and discuss them again so as to be able to ddfineeded details in the models. Because of
this, the time increases and together with it th&cincrease. Usually there is no possibility
or it is extremely unprofitable to stop or postpahe project in this phase because although
the models are created, there is usually nothingetver to the customer and therefore no
payment from the customer.

2. ‘Nothing’ to show to the customer
Although the models are discussed between the stsadyd the customer and are shown to
the customer, the customer still cannot ‘click’ amy button and everything is only ‘on the
paper’. The customer may get feeling that the dgrakent team has done nothing and may
not deliver the product on time.

As the conclusion from this comparison it can bansed that the big difference between
MDA and Agile approach is in the amount of modelidghether to model or no to model —
this question can be answered according to theifyriavhich is defined for the particular
project. As the modeling brings lower risk in thejpct (everything is in on the paper and the
costs are controlled), decision for modeling canmaele in cases when the risk is higher or
risk managing is set as the priority. On the oslide, modeling can spend a lot of time and
therefore if the time is the priority, minimizindg modeling is good decision then.

Other difference can be defined between MDA andeAgpproach except of the amount of
modeling. That is the phase in which the changébeofequirements are solved (Figure 3).

E-Leader Prague 2015

AGILE
DEVELOPMENT

- [REQUIREMENTS REQUIREMENTS [
MODELING

MDA

MODELING
CODING

'SINJIHINDIY GIDONVHD |

i

PROJECT TIME

| SININIYINDIY AIDONVHD |

CODING

DELIVERY .- | DELIVERY

FigureRequirementChanges in MDA and Agile pproacl

MDA modeling covers more project time than in agi&elopment, as the code is genere
All problems have to be solved, so all requiremehianges have to be solved till this ph
too. On the other side in agile approach codingec®the most proje time, so the majorit
(or all) of the requirements changes, is solvethia phase. This is the difference and
advantages and disadvantacould be defined so as to say what is better.

The advantages of solving changes in model:

1. Time spendingin case of bigger changes. If the changes are al@ame the
programmer can work out them very quickly. Buthétchanges are more significi
or influences other parts, it is always better adves them in sooner phases of
project life cycle, wherhere is not so much work done.

2. Changes with influence to other project parts. Savheéhe changes may requ
changing also other part of the project and in tlaise it is better to solve them in-
model, where these dependences can be modeleckter recognizec

3. Documenting the changes. If the changes are descehd solved in the models, 1
history of changes can be kept. If the changesaleed only in the code, it is ve
rare to keep thdetailed history about every change. The prograransually quickly
continue to solve the following task so as to stivetime instead of documenting 1
change in details.

The disadvantages of solving changes in the mc

1. Changes can be seen for the customer. If the chamdgne directly in the code a
can be seedirectly when working with the syst¢, the customer can better specif
this change is complete or not. The customer céerbdiscuss what he needs an
the done works are go

E-Leader Prague 2015

2. Time spending in case of elementary changes. Ifctienges are not so big, it is
always more quickly if only the programmer solvesstead of communicating the
change between more people in the developmentaeandescribing the change again
and again to the other member.

As the conclusion from this comparison it can bl ghat in case of small, elementary
changes it is better to solve them in coding phatie the attention to document them. There
are suitable software tools for making notes aldome works and for small changes this way
is sufficient. On the other side when the changesager and dependent on other parts (or
other parts are dependent on the changes), isdb&sit is better to model them.

The previous described views on the compared appesavere based on the difference: how
much to model and where in the life cycle to sdale changes of the requirements. There is
one more important fact in the MDA approach. Thapraach requires the compatible CASE
tool, which could generate the code of a good gudfom the model. As the code is
generated at the end of the life cycle, the risk loa defined, when a lot of project works are
done (models in very details) and if anything iomg in generating and the code has to be
recreated, the costs increase very fast. This ¢k be lower very rapidly in case the
development team uses proved CASE system and kitswanctionality well. This risk
depends on the experiences of the developer teahnanon the chosen approach and
therefore in case of comparison the two approacisespt relevant. It is very important
though therefore it has to be mentioned.

Using both approachesin one project

There are big differences between these approaamésusually for one project only one
methodology and with it one approach is used. Algiothe question about the possibility of
using both approaches in one project can be gillea.aim of this way of combination is to
take the advantages of both approaches and aweidisdvantages on the other side. The
beginning of the project lifecycle can be the samboth approaches, i.e. the requirements
definition. After this point the development teaastio decide which approach will be used.

According the previous described advantages aratid@tages it can be said, that there is
the way how to combine the approaches. After tlqgirements definition the development
team has to characterize the problems which alketsolved and the dependences between
the particular tasks to be solved. If there areespnoject parts which are more complex and
dependent between each other, it is better to ntbdel (and use MDA). And if it is possible
to divide the project parts with more and less dexipy, then it is the situation when the
approaches can be combined. If the more compleklgmes will be modeled and for
developing of the less complex problems the agier@ach will be used, in this case the
advantages of both can be taken and the disadwemntag be avoided.

Conclusion
The two approaches were described and comparédkiarticle. MDA approach is supposed

to be the future of using of UML language and depilg the software using the suitable

E-Leader Prague 2015

CASE system. The agile approach is very often usquraxis at present with aim to lower
project time and with it also the project costseféhare big differences between these two
approaches, which can be summarized as:

» The amount of the modeling in the project. Whileéhia MDA approach, there is much
more modeling in the project lifecycle, in agilepapach, there is only minimum of
creating system models.

* The place of requirements changes solved in thegrbfecycle. While in the MDA
approach the changes are solved when modelinggiie approach the changes are
solved in coding. Agile approach accepts recreating code because of the
requirement change.

The differences bring the disadvantages and adgestaf these approaches resulted mainly
from the decision whether to model or not. In socases created models can be big
advantage for examplewhen more complex problemsiwhave to be solved or in case of

requirements changes in this kind of problems. @ dther side, a lot of not so complex

problems give the reason to minimize modeling asatomg models in these cases and
communicating the models between the developmam t@embers could spend more time

unnecessarily.

The described advantages and disadvantages givgudstion about combining these two
approaches so as to take only the advantages ailthe disadvantages. This is possible if
the project tasks can be divided into two (or mgras, one with more complex tasks with
more dependences between each other, and the ledseecomplex with less dependences. Of
course there should be minimum dependences betthese two parts. The dependence
appears when a change in one task requires chamgéiser tasks being dependent on this
task. The MDA approach could be used for the ptgyact with more complex problems to

be solved and the agile approach for the other p&et project part with the less complex

problems can be much bigger, because there carabg pnoblems of this kind to be solved.

Using the agile approach for this part can shatterproject time very significantly.

References

[1] J. Arlow and I. Neustadt, “UML 2 and the UnifieProcess: Practical Object-
Oriented Analysis and Design,” 2nd ed., Pearsoncéiin, Inc, Addison Wesley
Professional, 2005

[2] F. Truyen, “The Fast Guide to Model Driven Arecture — The Basis of Model
Driven Architecture”, Cephas Consulting Corp, Whpéper, 2006

[3] Composite authors, “Manifesto for Agile SoftwaDevelopment,” available at:
http://agilemanifesto.org/

[4] M. Tava, V. Tava, “DBRE and MDA integration,” In: Objekty 2011 preedings
of the 16th international conference on object rigd Technologies, Zilina,
Slovakia, November 2011, ISBN 978-80-554-0432-5,5%65

[5]

[6]

[7]

E-Leader Prague 2015

M. Tavat and V. Tavd, “The General Algorithm for the Design of the MDA
Transformation Models,” In: CICSyN2013, Fifth Intetional Conference on
Computational Intelligence, Communication Systemd Betworks, Madrid, Spain,
5-7 June 2013, ISBN 978-0-7685-5042-8, pp. 171-179

M. MeSko, E. KrSak and P. Hrkut, “The recuesisegment 3D reconstruction
algorithm,” In: In: CICSyN2013, Fifth Internation&onference on Computational
Intelligence, Communication Systems and Networkadil, Spain, 5-7 June 2013,
ISBN 978-0-7685-5042-8, pp. 261 — 264

Scrum Org., Scruminc., SCRUM Guides, Retrieved from:

http://www.scrumguides.org/

