
E-Leader Prague 2015

Agile Approach and MDA in Software Development Process

JaroslavaKniežová, Ing. PhD.
Associate Professor

Comenius University
Faculty of Management

Department of Information Systems
Bratislava, Slovakia

Abstract

There are several approaches defined in software development process. Each of them

usually gives the rules and steps of developing the software for the customer in a good quality
and also in as quickly as possible way. Achieving this brings the satisfaction to the customer
as he gets effective software solution and also to the solution provider as he can lower the
costs of software development by shortening the development time and this way increases his
income. At present the agile approach is very common in software development companies.
Using MDA in developing process should optimize the coding process as the analytical and
design models should be transformed into the code. There can be seen some differences
between these two approaches. In agile approach only minimum of modeling is used in
development process. On the other side for optimal using of MDA the detailed models have
to be created. This article contains description and comparison of these two approaches. The
possibility of using both of these approaches in one project as well as the advantages or
disadvantages of them are described too.

Modeling in Development Process

Several approaches for information system development process have been defined. The used
approach influences the methodology, which has to be used in development process. It can be
said that the first significant moment in information system modeling was the formation of
traditional methodologies. These methodologies contain phases of the development process
and usually several phases at the process beginning consist of the modeling works. According
to these methodologies the models of information system should be always created before the
coding works start. This should assure that no additional costs appear during the development
process when the development team comes to the more detailed information. Detailed
analysis and design should be done before coding, so all details are defined in the models and
the coding can be done quickly then. Although the methodologies were changing through the
history with the aim of achieving lowering costs for the solution provider and also the price
for the customer with keeping the result quality, modeling of information systems has stayed
in the phases of the development process until the agile approach came (described later in this
paper).

According to RUP methodology the phase, which is focused on the modeling, i.e. Analysis
and Design phase, is most important phase of the process, because if this phase is done in
good details, the later coding is very quickly and of low costs. This methodology has its

E-Leader Prague 2015

evaluation cycle as after each phase of the project the finished works are evaluated according
the previously defined criteria. And the evaluation after Analysis and Design phase is very
important too, because on this evaluation and the decision based on it the whole project
success depends.

It can be said that only UML language is used for modeling at present. The language was
defined so as to unify the language of the analysts and their models. UML should be used
together with the chosen methodology, i.e. the development team should follow the phases of
the methodology and use UML for the models creating within them.

Model Driven Architecture in Development process

Model driven architecture (MDA) is the approach in development process, which is based on
the UML language and is said to be the future of fully using UML in development process
[1]. The main idea of MDA is that the software product is the result of models transformation
process. According to this approach several models should be created with the defined
sequence of their transformation. At the end of this process, the last model should be
transformed to the source code. The suitable CASE (Computer Aided Software Engineering)
system is needed and supposed to be used.

In this approach the main works are done when modeling in the development process and
therefore models creation is supposed to require majority of the time and finance project
calculation. The model which is the basis for the transformation to the source code has to
contain all details and all defined solutions.

The models created in MDA (Figure 1) approach are:

A. CIM – Computer Independent Model

In this model the basic system requirements are modeled, project dictionary and the main
system use cases are defined. There is a minimum of computer processing details in this
model and the information should be modeled on use case (conceptual) level.

B. PIM – Platform Independent Model

This model is created when more details are added. The being built system is modeled in
more details including the way of tasks processing – the use cases are modeled in details of
the way how they will be done by the system. The details are captured at logical view, i.e. all
data and algorithm details abstracted from platform specific processing.

C. PSM–Platform Specific Model

This model is worked out for the platform which will be used. The code – level details are
included in the models. This model is the last one in the transformation and is used for code
generation.

E-Leader Prague 2015

Figure 1Models in MDA

As the MDA architecture is supposed to be used very often in the future for model based
application developing and the majority of the project works will cover modeling, there are
many publications with attention to this problem (for example [4], [5]). Developing an
application fully MDA way means using CASE tool to generate source code from the
detailed models and this means minimum coding and maximum modeling.

Agile Approach in Development Process

It can be said that the 2001 year and the definition of the Manifesto for Agile Software
Development is the beginning of the agile approach in software development. The Manifesto
for Agile Software Development contains principles for agile developing which can help to
achieve the project aims given by the development team. The aims in agile development are
based mainly on one factor and this is the time. Agile development means developing the
application in as short time as possible. Although the result is not complete and/or is not of
required quality the time is the main (and often the only) factor of the project success. As the
time has to be shortened as much as possible, some of the project works are skipped. This
approach was formed based on the idea of a group of programmers, according to whom the
system modeling spends a lot of time and produces no result for the customer (only for the
development team members) and therefore it should be minimized. Although the
programming works will be reworked because of not having solved the details in models,
models are not created in this approach or are created very minimally and without details,
only on the conceptual level.

It can be said that developing of an application using the agile approach brings more
programming and less modeling through the project life cycle. Agile approach is very
common at present and there are lots of companies using it. There are methodologies, which
support this approach, for example SCRUM. Development life cycle in agile methodology is
based on very often usually daily organized meetings on which the work details needed on
that day are discussed. It is very important that the customer and future system users are
present at these meetings and every team member who cooperates on the discussed project

E-Leader Prague 2015

part should be present too. It can be said that these meetings replace the detailed modeling the
actual particular requirements are defined and the way of implementation of the particular
tasks are on the programmer who implements them.

Figure2Principle of Agile and TraditionalDevelopment

Understanding the agile approach means knowing and understanding its main principles
(Figure 2). In traditional development the first step was discussing the required functionality
of the future system and then the needed time and money were derived. In the agile approach
the time and money are given at the beginning and then the system functionality, which is to
be delivered, is derived from these constants.

MDA and Agile development - comparison
According to the characteristics about these two approaches, given above, it can be defined
one main difference between them. As the MDA approach represent creating detailed models,
this kind of project works are the main part of the project life cycle and can spend most time
and money as well. Most team members should be analysts, who create these models. On the
other site, the agile approach means very minimum of the modeling and maximum of the
programming, including refactoring instead. This is really a big difference between these two
approaches which influences other important facts. To find out and describe these facts as the
advantages or disadvantages it is needed to define the need and the position of the modeling
in the project lifecycle. The reasons (the aim) to model (and take the advantages of modeling)
can be defined as:

1. Discuss and solve problems

Models are created so as to catch the information about the future system. The analysts
design and discuss the solution with the customer and the accepted issues are described in the
models. These models are the starting point for the programmers. The advantages are:

• There are more people cooperating on one problem. The customer as future system
user plays very important role in this process and his opinion is the key factor for the
project success. When creating models, the customer’s opinion can be captured in
these models. Also the other team members can share these models and this way they
can cooperate on the solution. The model, which was created this way, keeps the
solution as the result of customer’s and anyone’s team member discussion.

• The models keep accepted solution. In this case the result of the analytic works is ‘on
the paper’ and it is not possible to ignore once agreed solutions for other team
members and for the customer as well.

E-Leader Prague 2015

• Keeping the historical information. Sometimes solving some problems can be
postponed and the development team members continue in working on these issues
after some (sometimes longer) time. As the previously discussed details are in the
models, the team members can look through the models instead of discussing these
issues once more.

2. Change management

It can be said that no project without any change in its requirements exists. It is very usual
that the customer changes the requirements during the project works. The development team
has to accept these changes but it is possible (and it is good because of cost control) to
discuss the rules of such changes. Any rule is agreed between the development team and the
customer, it will be always much easier to manage them when the changes are defined in the
models.

There can be also the disadvantages of modeling defined as:

1. Time spending

Creating models requires time. The analysts have to discuss all problems, design the solutions
and discuss them again so as to be able to define all needed details in the models. Because of
this, the time increases and together with it the costs increase. Usually there is no possibility
or it is extremely unprofitable to stop or postpone the project in this phase because although
the models are created, there is usually nothing to deliver to the customer and therefore no
payment from the customer.

2. ‘Nothing’ to show to the customer

Although the models are discussed between the analysts and the customer and are shown to
the customer, the customer still cannot ‘click’ on any button and everything is only ‘on the
paper’. The customer may get feeling that the development team has done nothing and may
not deliver the product on time.

As the conclusion from this comparison it can be claimed that the big difference between
MDA and Agile approach is in the amount of modeling. Whether to model or no to model –
this question can be answered according to the priority, which is defined for the particular
project. As the modeling brings lower risk in the project (everything is in on the paper and the
costs are controlled), decision for modeling can be made in cases when the risk is higher or
risk managing is set as the priority. On the other side, modeling can spend a lot of time and
therefore if the time is the priority, minimizing of modeling is good decision then.

Other difference can be defined between MDA and Agile approach except of the amount of
modeling. That is the phase in which the changes of the requirements are solved (Figure 3).

Figure3Requirements

MDA modeling covers more project time than in agile development, as the code is generated.
All problems have to be solved, so all requirements changes have to be solved till this phase
too. On the other side in agile approach coding covers the most project
(or all) of the requirements changes, is solved in this phase. This is the difference and the
advantages and disadvantages

The advantages of solving changes in models are:

1. Time spending in case of bigger changes. If the changes are elementary, the
programmer can work out them very quickly. But if the changes are more significant
or influences other parts, it is always better to solve them in sooner phases of the
project life cycle, when t

2. Changes with influence to other project parts. Some of the changes may require
changing also other part of the project and in this case it is better to solve them in the
model, where these dependences can be modeled and bette

3. Documenting the changes. If the changes are described and solved in the models, the
history of changes can be kept. If the changes are solved only in the code, it is very
rare to keep the detailed history about every change. The programmers u
continue to solve the following task so as to save the time instead of documenting the
change in details.

The disadvantages of solving changes in the models:

1. Changes can be seen for the customer. If the change is done directly in the code and
can be seen directly when working with the system
this change is complete or not. The customer can better discuss what he needs and if
the done works are good.

E

Requirements Changes in MDA and Agile Approach

MDA modeling covers more project time than in agile development, as the code is generated.
All problems have to be solved, so all requirements changes have to be solved till this phase
too. On the other side in agile approach coding covers the most project time, so the majority
(or all) of the requirements changes, is solved in this phase. This is the difference and the
advantages and disadvantages could be defined so as to say what is better.

The advantages of solving changes in models are:

in case of bigger changes. If the changes are elementary, the
programmer can work out them very quickly. But if the changes are more significant
or influences other parts, it is always better to solve them in sooner phases of the
project life cycle, when there is not so much work done.

Changes with influence to other project parts. Some of the changes may require
changing also other part of the project and in this case it is better to solve them in the
model, where these dependences can be modeled and better recognized.

Documenting the changes. If the changes are described and solved in the models, the
history of changes can be kept. If the changes are solved only in the code, it is very

detailed history about every change. The programmers u
continue to solve the following task so as to save the time instead of documenting the

The disadvantages of solving changes in the models:

Changes can be seen for the customer. If the change is done directly in the code and
directly when working with the system, the customer can better specify if

this change is complete or not. The customer can better discuss what he needs and if
the done works are good.

E-Leader Prague 2015

pproach

MDA modeling covers more project time than in agile development, as the code is generated.
All problems have to be solved, so all requirements changes have to be solved till this phase

time, so the majority
(or all) of the requirements changes, is solved in this phase. This is the difference and the

in case of bigger changes. If the changes are elementary, the
programmer can work out them very quickly. But if the changes are more significant
or influences other parts, it is always better to solve them in sooner phases of the

Changes with influence to other project parts. Some of the changes may require
changing also other part of the project and in this case it is better to solve them in the

r recognized.

Documenting the changes. If the changes are described and solved in the models, the
history of changes can be kept. If the changes are solved only in the code, it is very

detailed history about every change. The programmers usually quickly
continue to solve the following task so as to save the time instead of documenting the

Changes can be seen for the customer. If the change is done directly in the code and
, the customer can better specify if

this change is complete or not. The customer can better discuss what he needs and if

E-Leader Prague 2015

2. Time spending in case of elementary changes. If the changes are not so big, it is
always more quickly if only the programmer solves it instead of communicating the
change between more people in the development team and describing the change again
and again to the other member.

As the conclusion from this comparison it can be said that in case of small, elementary
changes it is better to solve them in coding phase with the attention to document them. There
are suitable software tools for making notes about done works and for small changes this way
is sufficient. On the other side when the changes are bigger and dependent on other parts (or
other parts are dependent on the changes), in this case it is better to model them.

The previous described views on the compared approaches were based on the difference: how
much to model and where in the life cycle to solve the changes of the requirements. There is
one more important fact in the MDA approach. This approach requires the compatible CASE
tool, which could generate the code of a good quality from the model. As the code is
generated at the end of the life cycle, the risk can be defined, when a lot of project works are
done (models in very details) and if anything is wrong in generating and the code has to be
recreated, the costs increase very fast. This risk can be lower very rapidly in case the
development team uses proved CASE system and knows its functionality well. This risk
depends on the experiences of the developer team and not on the chosen approach and
therefore in case of comparison the two approaches, is not relevant. It is very important
though therefore it has to be mentioned.

Using both approaches in one project

There are big differences between these approaches and usually for one project only one
methodology and with it one approach is used. Although the question about the possibility of
using both approaches in one project can be given. The aim of this way of combination is to
take the advantages of both approaches and avoid the disadvantages on the other side. The
beginning of the project lifecycle can be the same in both approaches, i.e. the requirements
definition. After this point the development team has to decide which approach will be used.

According the previous described advantages and disadvantages it can be said, that there is
the way how to combine the approaches. After the requirements definition the development
team has to characterize the problems which are to be solved and the dependences between
the particular tasks to be solved. If there are some project parts which are more complex and
dependent between each other, it is better to model them (and use MDA). And if it is possible
to divide the project parts with more and less complexity, then it is the situation when the
approaches can be combined. If the more complex problems will be modeled and for
developing of the less complex problems the agile approach will be used, in this case the
advantages of both can be taken and the disadvantages can be avoided.

Conclusion
The two approaches were described and compared in this article. MDA approach is supposed
to be the future of using of UML language and developing the software using the suitable

E-Leader Prague 2015

CASE system. The agile approach is very often used in praxis at present with aim to lower
project time and with it also the project costs. There are big differences between these two
approaches, which can be summarized as:

• The amount of the modeling in the project. While in the MDA approach, there is much
more modeling in the project lifecycle, in agile approach, there is only minimum of
creating system models.

• The place of requirements changes solved in the project lifecycle. While in the MDA
approach the changes are solved when modeling, in agile approach the changes are
solved in coding. Agile approach accepts recreating the code because of the
requirement change.

The differences bring the disadvantages and advantages of these approaches resulted mainly
from the decision whether to model or not. In some cases created models can be big
advantage for examplewhen more complex problems which have to be solved or in case of
requirements changes in this kind of problems. On the other side, a lot of not so complex
problems give the reason to minimize modeling as creating models in these cases and
communicating the models between the development team members could spend more time
unnecessarily.

The described advantages and disadvantages give the question about combining these two
approaches so as to take only the advantages and avoid the disadvantages. This is possible if
the project tasks can be divided into two (or more) parts, one with more complex tasks with
more dependences between each other, and the other, less complex with less dependences. Of
course there should be minimum dependences between these two parts. The dependence
appears when a change in one task requires changes in other tasks being dependent on this
task. The MDA approach could be used for the project part with more complex problems to
be solved and the agile approach for the other part. The project part with the less complex
problems can be much bigger, because there can be many problems of this kind to be solved.
Using the agile approach for this part can shorten the project time very significantly.

References

[1] J. Arlow and I. Neustadt, “UML 2 and the Unified Process: Practical Object-
Oriented Analysis and Design,” 2nd ed., Pearson Education, Inc, Addison Wesley
Professional, 2005

[2] F. Truyen, “The Fast Guide to Model Driven Architecture – The Basis of Model
Driven Architecture”, Cephas Consulting Corp, Whitepaper, 2006

[3] Composite authors, “Manifesto for Agile Software Development,” available at:
http://agilemanifesto.org/

[4] M. Tavač, V. Tavač, “DBRE and MDA integration,” In: Objekty 2011 proceedings
of the 16th international conference on object oriented Technologies, Žilina,
Slovakia, November 2011, ISBN 978-80-554-0432-5, pp. 52-65

E-Leader Prague 2015

[5] M. Tavač and V. Tavač, “The General Algorithm for the Design of the MDA
Transformation Models,” In: CICSyN2013, Fifth International Conference on
Computational Intelligence, Communication Systems and Networks, Madrid, Spain,
5-7 June 2013, ISBN 978-0-7685-5042-8, pp. 171-179

[6] M. Meško, E. Kršák and P. Hrkút, “The recursive segment 3D reconstruction
algorithm,” In: In: CICSyN2013, Fifth International Conference on Computational
Intelligence, Communication Systems and Networks, Madrid, Spain, 5-7 June 2013,
ISBN 978-0-7685-5042-8, pp. 261 – 264

[7] Scrum Org., ScrumInc., SCRUM Guides, Retrieved from:
http://www.scrumguides.org/

