
E-Leader Croatia 2011

Evaluation of an Agile Application Development Approach
with 4GL Tools in an Offshored IT-Supply Scenario

Dr. Michael Peter Linke

EA Research

Saarbruecken, Germany

The cost pressure for IT-organisations has grown considerably to deliver projects,

software, capabilities and features faster and in a more cost-efficient way. Agile

software development methods, like Scrum, in cooperation with tools and methods of

(partly) automated code generation can be interpreted as an answer to these prevailing

challenges. Within this evaluation study in a mixed SAP IT environment a conception

for the combined usage of 4GL software tools and agile software development methods

together with offshored software developers within different business domains was

developed and therefore executed. The results showed that an average cost reduction

between 40% and 80% regarding to the overall project setup were within the range of

practical realization, if a decent project and communication governance would be in

place.

1.1 Motivation and Introduction

The cost pressure for IT-organisations has grown considerably to deliver projects,

software, capabilities and features faster and in a more cost-efficient way, and this not

only since the financial crisis of the last years. Also the increasing spread of mobile

applications for mobiles or smart phones – the number of them actually already exceeds

the number of stationary personal computers [Westney1995] – as well as the associated

importance of world-wide available “Apps”, contributes to the increased expectations of

users on IT organisations. Together with an increasing consumerization of IT hardware

[Hackenson2008], that is the use of business software on private end devices and vice

versa, as well as a likewise increasing mixture of work and life habits, has led to a 21st

century customer [Takeuchi1986] who demands and asks for reactions to inquiries and

requests, to some extent also real-time. Agile software development methods, like for

E-Leader Croatia 2011

instance Scrum [Schwaber2002], in cooperation with tools and methods of (partly)

automated code generation can be interpreted as an answer to these prevailing

challenges; if the work performance is even executed with spatial distance, this complex

can additionally be extended by a supplemental, external element, which promises

comparative cost methods compared to high income countries on the one hand, and on

the other hand requires more communication and standardizing of proceedings, because

implicit knowledge [Upadrista2008] cannot be presumed from offshore contractors

very often. Here communication governance seems to be a clear advantage, irrespective

of the actually established communication tools, and also here there are COTS

(Commercial Off-The-Shelf) alternatives of the Open Source Ecosphere available

[Bruce2006; Mielnik2003].

1.2 Software Requirements

To generate applications is not for the own sake of IT-organisations, it usually happens

on the basis of requests and requirements of the business side, if one disregards the

applications of Business Service Management (BSM) [Robertson2006], thus IT-

requirements for the IT-organisation itself. How to deal with these requirements

qualitatively, from the simple text note up to the use of big modelling environments for

effective documentation, is subject of the science of Requirements Engineering

[Rup2004], which will only be touched here. Relevant for the single case of application

described here are the well known and standardized quality criteria of the IEEE 83,

Norm des Institute of Electric and Electronic Engineers (IEEE), published 1998,

[IEEE1998] which define basic quality rules for the documentation of requirements in

organisations. The criteria formulated within the Standard IEEE 830 claim amongst

other things that the requirements are

• correct and valid,

• distinct and free of interpretation,

• •fully documented,

• •consistent and free of conflicts,

E-Leader Croatia 2011

• evaluated and prioritised,

• verifiable according to defined criteria,

• granular, as well as

• valid and up-to-date.

Although IEEE standards have high and practical relevance especially in technical

environments, the effort for the definition of the above criteria in its entirety for the

complete IT-requirements documentation seems to be too high, especially according to

many business units who are instructed at many places to create the requirements

documentation. Even though IT project practice shows the importance of distinct and

clear definitions according to the above mentioned criteria, represented by the still very

high number of failed IT-projects where the unclear requirement seems to be the main

driver for failure [IEEE1990], in the daily business of organisations it might be an

unpopular duty which experiences the more refusal the higher the effort for the target

documentation for requirement specifications becomes in fact.

1.3 Agile Software Methods

If one examines the core of many agile software methods, irrespective whether their

concrete form is done with a variant of Extreme Programming (XP) [Beck1999] or with

the Scrum-approach [Beck2001], the request of many IT-organisations for faster and

more customer-oriented realisation of application development than with the traditional

V-models will be understandable. As some examples of agile methods the following

ones can be mentioned here amongst others:

• Pair Programming (Developer / Tester), the

• Test-driven development, or development through

• Features and /or Story-Cards

E-Leader Croatia 2011

While the requirements definition resp. Requirements Engineering within the V-model -

which may be considered as being a classical one - can still be classified as cumulative

and ex-ante, then in the agile case this will take place iteratively and ad hoc, in the sense

of a step by step Rapid Prototyping. Because of this close time distance between the

requirements definition by the specialist division and the visible implementation by an

offshore Supply-IT for instance, the observed satisfaction can be increased where

appropriate due to the acceleration of the software development, as long as it will be

sufficiently integrated into the entire development, governance and review process.

Although this seems to be absolutely the case through the use of agile methods

[Beck2001] , the implementation of the pure method does not guarantee the success of

the project and may also lead to frustrations of the business units because of permanent

misunderstanding from the developing supply-IT, for instance if always the same bugs

are appearing at reviews or requested features were not implemented permanently.

»We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value: Individuals
and interactions over processes and tools Working software over
comprehensive documentation Customer collaboration over contract
negotiation Responding to change over following a plan [...].« [Beck2001]).

Fig. 1: Strutural comparison between V-Model and Scrum (Source: own composition)

E-Leader Croatia 2011

Besides, the implementation of these methods seems to be more focused onto the

development of new applications, stand-alone where required, and less onto further

development and enhancements of monolithic application landscapes as they can be

seen very often in corporate groups, like for instance in established Best-of-Breed

ERP/CRM/SCM domains [Takeuchi1986]. Especially, if a big amount of interfaces are

to be tested or subsystems and other systems are to be integrated, stricter and more

process oriented proceedings, which are described among others by the ITIL-process

model [DeGrace1990], might be a reasonable alternative to avoid that changes become

critical and do damage to the business [DeGrace1990]. Yet, it is to be noted here that

especially changes in the sense of agile methods may be considered as characteristic and

creative elements of this development organisation, so to speak their Unique Selling

Proposition (USP), in contrast to the change in IT Service Management where it is a

minimizing entity to be managed rigidly.

If one accepts these limitations of the agile software development and chooses the scope

of IT-development project consequentially, there remains a broad implementation area

for this customer-oriented method with the generation of low-interface standalone

applications.

Fig. 2: Distribution of requirements and coded software over several iterations (Source: own

composition)

E-Leader Croatia 2011

1.4 Communication and Collaboration

Thanks to the extensive spread of social media like Facebook or LinkedIn [Kroll2003;

Papacharissi2009] hundred millions of people all over the world are aware of the

concrete meaning of social real-time communication. Due to modern and fast web-

technologies (like for example an adapted version of PHP for Facebook) [Culnan2010],

as well as low entry levels as far as the use of access technologies is concerned

(browser) it is possible, to use community and communication features of social media

without any problem all over the world. However, the techniques summarized under the

keyword “Web 2.0” are not new as far as communication concepts are concerned and

may be considered as evolutionary, but unplanned advancements of the Knowledge

Management (KM)-[Alavi2001] idea of the 1990s, being fully aware of the failure of

many KM-projects of the years of 1990 [Levy2009]. Therefore simplicity and ubiquity

seem to be of increasing relevance for the omnipresent IT topic mix “Communication &

Knowledge”.

The presence of a communication infrastructure in a software environment could be

even more than an enabler in every sense, but more a so-called Accelerator, a factor that

accelerates the software-oriented total development towards a certain direction.

Indications like the rapid Linux/Open Source development since the mid of the 1990s

[Ljungberg2000], characterized by the participation of millions of software developers

Fig. 3: Effectivness of communication methods

E-Leader Croatia 2011

at central projects, are a sign that this collaborative and interestingly often beneficial

work would not be possible without a single global communication network. To act

successfully, especially within world-wide distributed software development projects,

tools and techniques are necessary which exceed a normal distributed code (CVS) and

version management and which replace onsite meetings between business units and

developers so well that friction loss may be minimized.

1.4.1 Forum and Mail-Thread Documentation

In many places an effective email management is not always established to its full

extent. Groupware solutions, which in fact offer a broad spectrum of functionality, are

used only at a fraction - Calendar und E-Mail are still the most used modules here.

Long-term preservation and especially an easy locating of messages, knowledge

artefacts and attachments across years and projects is still a challenge here, which many

organisations have to face. Proprietary email storage formats like the PST-format of MS

Outlook [Microsoft2007] offer here as local copies only a limited approach to the

solution of this problem. Available Blackboard and Forum Applications [Costello2004;

Jackson2007], irrespective of being COTS or Open Source, are offering a solution to

this gap with a wide variety of communication, besides of the existing groupware

solutions, like for instance MS Exchange, Lotus Notes or Novell Groupwise. Sorted by

project, with these tools it is possible to discuss project topics and requirements directly

in the set up virtual project rooms and forums, with the possibility of auto-notifiers to

all participants of the forum (subscribers). Alternatively, conventional emails of classic

email-clients may be copied redundantly to the forum and can there be stored

permanently and indexed.

1.4.2 Project and Documentation Repositories

Irrespective of the actually chosen project management procedure model, Prince2 and

PMI [Institute2004; Nawrocki2006] may be chosen for example, a central and

standardized documentation repository is important and of high relevance for the total

project to ensure all project members of the software development environment are

talking about the same. CVS Version Management Systems, but also simple

applications based on Wiki can be used for a central, web-based storage of project

documents.

E-Leader Croatia 2011

1.4.3 Instant Messaging and Availability

Technical ad hoc inquiries are of high relevance, especially for distributed teams and

agile working groups, quasi to make up for the short personal chat at the office. Instant

Messaging [Hill2006] and Presence Aware [Shaw2007] tools may be implemented to

make it possible for distributed teams to discuss and clarify ad hoc topics, irrespective

of time and geography.

1.4.4 Bug and Issue Tracking

Especially after going live with a software solution it has proven of value to store all

issues, bugs, change requests and incidents in a central database and to make a note

about the state of processing. Solutions for bug and issue tracking with different roles,

reporting and notifying techniques (email, fax) are the applications of choice to keep

records and control even for big projects and to establish any stability within the

developed software.

1.4.5 Web Presentation and Audio Conferencing

While with onsite development it is possible to do for instance presentations with

Powerpoint slides and live demos of the application in a room with a beamer, it is

necessary with a distributed team to switch to other techniques and tools. Web-based

conferencing tools which could be summarized with the term Web conferencing

[Angeli2003; Bisdikian1998] offer audio and web presentation techniques for

presentations prepared in advance by project stakeholders and project members, but also

the possibility for live demos of applications in their particular development phases. An

important, additional feature for knowledge documentation in the software development

process may be the recording of web- conferences at a defined development phase to

comply with possible future legal questions.

1.4.6 Search Engine

If one looks at the different media types that can be used in an IT project (except for the

code itself), from a simple office document through email fragments up to Instant

Messaging protocols, it will soon become clear, especially for long lasting projects with

E-Leader Croatia 2011

changing resources, how important it is to find this information during the project

quickly and easily. Search Engines, Full Text Indexer or Crawler [Mertz2001] for the

periodical search of different document archives offer the possibility to keep permanent

indices of relevant project documents on a sustained basis.

1.5 CASE, 4GL and Code Generators

If one uses the possibilities of agile methods in a software development project and

wants to provide an additional plus as far as development speed is concerned, there are

methods and tools from the area of Computer Aided Software Engineering (CASE)

[Gibson1991], partly also transformed to 4th Generation Languages [Maxwell1990]

since the 1990s. These code generators allow the use of integrated work benches, partly

automated, simply said: through the massive use of “macros”, which the user knows

from the office application world, graphical user interfaces, reports, menu structures and

database queries and output may be created by drag and drop.

The code generated by the code generator is usually less maintainable than manually

programmed code as the automation mechanism [Royce1987], thus the existing macros

and libraries are laid out for universality. Many of the upcoming actions will be

managed through parameters in the internal object model.Historically, 4GL languages

have seen their widest spread in the 1990s, amongst others in integrated commercial

development environments and work benches, where Gupta [Vnuk2011], Informix 4GL

[Maxwell1990], Clipper [Hollingsworth1989] or also TeamDeveloper

Fig. 4: Structural layout of code generators (Source: own composition)

E-Leader Croatia 2011

[Corporation2010] have been and still are well known trade names. A low tactical

investment protection which was produced by numerous mergers & acquisitions

[NetMBA2007] in this segment of the IT industry at the begin of the new millennium

have pushed back the spread of this development approach in favour of object-oriented

3GL based languages [Cockburn2006], like Java or .net which allow significantly more

flexibility based on individual code, the functional design is left to the human software

developer though. However, there are also constructs and libraries for these languages

that allow an increasing automation towards 4GL. Whereas with 3GL languages the

focus is on the use of standardized control structures. Thus the dividing line often does

not exist in the actual syntax of the language, but in the supplied standard libraries and

the thereof allowed level of abstraction for programming. Depending on how much use

of additional 3rd party libraries is made by a 3GL language with appropriate abstraction

and control structures and the less manual coding of the developer is required, the

nearer is the approach to the 4GL paradigm, for example in the reporting and with so

called CRUD database applications (Create, Update, Delete) [Baghdadi2006].

The limits of classifications between the different “generations” are floating for all

above mentioned higher programming languages and are not separated neatly and

conceptually: while machine code (example: 10110000 01100001) is clearly defined as

first generation, the first software code really readable by humans in Assembler

(example: mov al, 61h) quasi describes the 2GL which can be found seldom these days,

but if found then in device drivers or highly optimised graphical libraries – the high

effort for abstractions in programming are usually avoided by developers. Because

abstraction requires more CPU performance too, you could definitely try to create a

dependency to the increased offer of CPU performance of the last years.

The term 4GL is not defined precisely until today; MARTIN [Martin1982] has tried first

to define it in the year 1982 in his book “Application Development Without

Programmers“, which means the idea of programming without a human programmer. In

reality this complete autonomous system couldn´t establish itself until today. Despite

code generators and abstraction libraries, the actual program logic will still be created

by software developers or at least by technical business analysts. But the 4GL approach

has experienced a renaissance with the strengthening of web-based script languages,

like Ruby, Python and especially PHP [Sottile2009]. Even IT-laymen can now in the

web period design and create web-applications with the support of these technologies.

E-Leader Croatia 2011

Besides, many failed 3GL software projects, especially in big organisations, at least

have led to take 4GL tools onto the short-list as far as new software developments are

concerned. Currently two commercial representatives are the tools “Scriptcase”

[ScriptCase2011] based on PHP and “Webdev/Windev” [WinDev2011] based on .net

that are propagated also in big IT-organisations. Therefore, there is some hope for one

of the two tools to have found an open language standard of 4GL tools for users with

the widespread PHP which could reduce the dependency on a single manufacturer,

irrespective of the code quality of the generation and this could increase the investment

protection in the medium term which in turn could result in an utilization and protection

spiral. Code quality and investment protection could therefore be closely connected.

1.6 Evaluation Project 4GL in a Big Organization

On the basis of a project support for a big corporate group the possibilities and

prospects for the adoption of 4GL tools in an agile software development project were

evaluated to better understand and classify the possibilities and limits of this approach.

1.6.1 Project Setup and Proceeding

The chosen 4GL-tool was implemented at a big corporate group (made anonymous

here) within 18 months for seven software projects in the areas Customer Service, Sales

and HR. The development control was done by experienced senior project managers

onsite, the actual development was done remotely for cost reasons by junior offshore

developers who usually worked at times of the day when the onsite project managers

were not available. The communication was done in an asynchronous manner through

mechanisms described in the appropriate chapter. Radical cost optimising was the

aimed business focus; the overall costs were at a very low 5-digit range for seven

projects. The servers were hosted externally at a mass host and connected via DSL-

lines.

The applications were all new and were based mainly on CRUD-requirements as well as

CSV-exports and imports, amongst others to SAP FI/CO systems. Six of the projects

were completed successfully and within the budget with a maximal delay of 2 months,

one project was cancelled by the business unit. The support will now be done by an

external supplier, after the displacement of the offshore employees. Compared to the

E-Leader Croatia 2011

traditional V-model of software development a 7-digit cost saving could be assumed.

1.6.2 Open Source Communication and Collaboration

To allow communication between the offshore team and onsite project managers Open

Source Collaboration Tools were implemented to save license costs effectively. A

project archive with Dokuwiki (about 12 GB project content) [DokuWiki2011] allowed

for a central, web-based storage of manually versioned project documents, the

infrastructure on application side was built by a forum software with auto email notifier-

features based on the PHP-tool PhpBlackBoard (PhpBB) [phpBB2011], (about 8900

Messages), as well as a PHP-based bug tracking system Mantis [MantisBT2011].

Thereby requirement documents were uploaded in Wiki, the project community was

informed via manual news entry in PhpBB about the new document. Mail threads from

the email client were documented mainly in the forum during the project. For project

members who were leaving the access rights were removed promptly, although the

entries remained in the forum. Written change requests in the form of paper, email or

documents were stored in the project repository, a new bug track entry was created and

Fig. 5: Collaboration and Communication Infrastructure (Source: own composition)

E-Leader Croatia 2011

within this entry there was a reference to the project repository. In this way a consistent

proceeding for 80% of the cases could be ensured with the clearly communicated goal:

all information at one source.

1.6.3 Implemented 4 GL Tool: Scriptcase

The commercial Open Source product Scriptcase of the Brazilian company Netmake

[ScriptCase2011] is a web-based representative of a 4GL tool, where it is interesting to

point out that also the actual development environment IDE itself is based on the so

called LAMP-Stack (Linux, Apache, PHP, MySQL - with ZEND Optimizer).

After the creation of the application via drag and drop, parameterisation, as well as

possibly manually added own PHP-code and the creation of a database connection, for

example with a MySQL-database, an executable PHP-application will be generated by

the code generator. Mainly focused on the simple generation of CRUD-applications,

this tool offers numerous modules and components (see table below), as well as a

comprehensive reporting framework. The final code generated after completion of the

development within the multi-user capable software environment is running natively on

LAMP-stacks, without a proprietary ZEND component.

Fig. 6: Screenshots of sample applications within the examined 'Scriptcase' 4GL Tool (Source:
[ScriptCase2011])

E-Leader Croatia 2011

Features

Reports

Forms Calendar

Editable Grid Master/Detail

Menus

PDF

Flash Charts AJAX Support

JQUERY Support Security Management and Role-
based Access Control

Rich Text Editor (WYSIWYG)

Fig. 7: Feature extract from 4GL Tool 'Scriptcase' (Source: [ScriptCase2011])

1.6.4 Usage scenarios and limits

The advised development curve within the agile project procedure could be achieved in

its entirety; the selected junior offshore programmers were able to develop CRUD-

applications after a couple of hours only. However, in the operating phase it is necessary

to do the versioning of the software to be deployed individually with this implemented

4GL-tool. Also database changes, which possibly were to be updated, had to be done

manually per release by Delta-SQL scripts in each case. The additional abstraction

within the IDE because of the object-oriented design of the tool is costing additional

performance; but the generation run on standard hardware with good performance. But

for screens and forms with more than 30 GUI-elements performance losses were

detectable which could be minimized successfully through sub-screens and tabs.

However, the difficulty in maintaining and reading the generated code is still to be rated

critically; similar as its predecessors from the 1990s, IDE has to be kept version-

controlled and on a sustained basis.

1.7 Summary

With iterative software development methods it seems to be possible to develop

software faster than with a development method driven by a traditional V-model. If one

joins this general development approach with partly automated code generation, for

instance through 4GL-code generators, additional comparative speed and cost

advantages can be achieved. The use of offshore developers can be asserted as an

additional component for IT-project cost reduction in IT-organizations, because usually

they have significantly lower hourly rates compared to onsite developers. This thesis

E-Leader Croatia 2011

could be proved by an evaluation example with the help of multiple example projects in

a big organization insofar as the actual cost reduction can be effectively realized by a

factor of 50-80. But at the same time the effort for communication between onsite and

offsite resources increased significantly, here it was tried to support this at the best

through the use of appropriate online collaboration tools. Despite the offshore

components, iterative GUI reviews were possible through telepresence and web-

conferencing though, as well as the processing of change requests. However, the

historically observed shortcomings of the code quality of the 4GL-tools generation

became as significant as potential topics concerning the guaranteed future of the

operating company as well as the additional versioning of the development environment

itself. In summary the comparative cost effects in this empiric example could be

achieved to the extent mentioned above, but with a significant increase of the necessary

project communication.

References

Alavi, M., and D. E. Leidner. 2001. Review: Knowledge management and knowledge

management systems: Conceptual foundations and research issues. Mis Quarterly

25(1):107-136.

Angeli, C., N. Valanides, and C. J. Bonk, 2003. Communication in a web-based

conferencing system: the quality of computer-mediated interactions. British Journal of

Educational Technology 34(1):31-43.

Baghdadi, Y. 2006. Reverse engineering relational databases to identify and specify

basic Web services with respect to service oriented computing. Information Systems

Frontiers 8(5):395-410.

Beck, K., M. Beedle, A. Bennekum, A. Cockburn, W. Cunningham, M. Fowler, and

Thomas D. 2001. http://www.agilemanifesto.org /principles.html

Beck, Kent. 1999. Extreme Programming Explained: Embrace Change: Addison-

Wesley Professional.

E-Leader Croatia 2011

Bisdikian, C., S. Brady, Y. N. Doganata, D. A. Foulger, F. Marconcini, M. Mourad, H.

L. Operowsky, G. Pacifici, and A. N. Tantawi. 1998. MultiMedia Digital Conferencing:

Web-enabled multimedia teleconferencing system. IBM Journal of Research

Development 42(2):281-298.

Bruce, G., P. Robson, and R. Spaven. 2006. OSS opportunities in open source software

- CRM and OSS standards. BT Technology Journal 24(1):127-140.

Cockburn, Alistair. 2006. Agile Software Development: The Cooperative Game 2006.

Addison-Wesley Professional.

Corporation, Unify. 2010. http://www.unify.com/Products/TeamDeveloper/default.aspx

Costello, B., R. Lenholt, and J. Stryker. 2004. Using blackboard library instruction:

Addressing the learning styles of Generations X and Y. Journal of Academic

Librarianship 30(6):452-460.

Culnan, M. J., P. J. McHugh, and J. I. Zubillaga. 2010. How large U.S. companies can

use Twitter and other social media to gain business value. MIS Quarterly Executive

9(4):243-259.

DeGrace, P., and H. Stahl. 1990. Wicked Problems, Righteous Solutions: A Catalog

of Modern Software Engineering Paradigms: PrenticeHall/YOURDON Press.

DokuWiki. 2011. http://www.dokuwiki.org/dokuwiki

Gibson, M. L., and C. A. Snyder. 1991. Computer-aided software engineering

facilitating the path for true software and knowledge engineering. International Journal

of Software Engineering and Knowledge Engineering 1(1):99-114.

Hackenson, Elizabeth. 2008. CIOs May Learn to Find Value in the Consumerization of

Enterprise IT. Enriching Communications 2(2):56-57.

Hill, C., R. Yates, C. Jones, and S. L. Kogan. 2006. Beyond predictable workflows:

Enhancing productivity in artful business processes. IBM Systems Journal 45(4):663-

682.

E-Leader Croatia 2011

Hollingsworth, W., H. Sachs, and A. J. Smith.1989. Clipper Processor - Instruction set

architecture and implementation. Communications of the ACM 32(2):200-219.

IEEE. 1990. IEEE Standard Glossary of Software Engineering Terminology.

IEEE. 1998. Recommended Practice for Software Requirement Specifications. In IEEE

Std 830-1998. New York: IEEE Computer Society.

Project Management Institute. 2004. A Guide to the Project Management Body of

Knowledge: Project Management Institute.

Jackson, P. A. 2007. Integrating information literacy into blackboard: Building campus

partnerships for successful student learning. Journal of Academic Librarianship

33(4):454-461.

Kroll, P., and P. Krutchten. 2003. The Rational Unified Process Made Easy: Addison-

Wesley, USA.

Levy, M. 2009. WEB 2.0 Implications on knowledge management. Journal of

Knowledge Management 13(1):120-134.

Ljungberg, J. 2000. Open source movements as a model for organizing. European

Journal of Information Systems 9(4):208-216.

MantisBT. 2011. Accessible from: www.mantisbt.org/

Martin, James. 1982. Application Development Without Programmers Prentice- Hall.

Maxwell, D. 1990. Informix-4GL - The promise and potential of a 4th-generation

language. Library Software Review 9(5):297-300.

Mertz, David. 2001. Charming Python: Developing a full-text indexer in Python [Cited:

30.01.2011] http://www.ibm.com/developerworks/xml/library/l-pyind.html

Microsoft 2007. How to manage .PST files in Outlook 2007, in Outlook 2003, and in

Outlook 2002 http://support.microsoft.com/kb/287070

E-Leader Croatia 2011

Mielnik, J. C., B. Lang, S. Lauriere, J. G. Schlosser, and V. Bouthors. 2003. ECots

platform: An inter-industrial initiative for COTS-related information sharing. In Cots-

Based Software Systems, Proceedings. H. Erdogmus and T. Weng, eds. Pp. 157- 167.

Lecture Notes in Computer Science. Berlin: Springer-Verlag Berlin

Nawrocki, J., L. Olek, M. Jasinski, B. Paliswiat, B. Walter, B. Pietrzak, and P. Godek.

2006. Balancing agility and discipline with Prince. In Rapid Integration of Software

Engineering Techniques. N. Guelfi and A. Savidis, eds. Pp. 266-277. Lecture Notes in

Computer Science. Berlin: Springer-Verlag Berlin.

NetMBA. 2007. Program Evaluation and Review Technique Cited: 30.01.2011]

Accessible from: http://www.netmba.com/operations/project/pert/

Papacharissi, Z. 2009. The virtual geographies of social networks: a comparative

analysis of Facebook, LinkedIn and ASmallWorld. New Media & Society 11(1-2):199-

220.

PHPBB. 2011. Accessible from: http://www.phpbb.com/

Robertson, S., and J. Robertson. 2006. Mastering the Requirements Process: Addison-

Wesley, Upper Saddle River.

Royce, W.W. 1987. Managing the development of large software systems: concepts

and techniques. Proceedings of the 9th international conference on Software

Engineering, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

Rup, C., and Sophist Group. 2004. Requirement Engineering and Management.

Munich: Hanser Publishing House.

Schwaber, Ken and Mike Beedle. 2002. Agile Software Development with Scrum:

Prentice Hall.

ScriptCase. 2011. http:// www.scriptcase.net/phpgenerator/home/home.php

Shaw, B., D. A. Scheufele, and S. Catalano 2007 The role of presence awareness in

organizational communication: An exploratory field experiment. Behavior &

E-Leader Croatia 2011

Information Technology 26(5):377-384.

Sottile, Matthew, Timothy G. Mattson, and Craig E. Rasmussen. 2009. Introduction to

Concurrency in Programming Languages Chapman and Hall/CRC.

Takeuchi, H., and I. Nonaka. 1986. The new new product development game. Harvard

Business Review 64(1):137-146.

Upadrista, Venkatesh. 2008. Managing Offshore Development Projects: An Agile

Approach: Multi-Media Publications Inc. .

Verner, June, and Graham, Tate. 1988. Estimating Size and Effort in Fourth-Generation

Development. In IEEE Transactions on Software Engineering. IEEE.

Vnuk, Lubos. 2011. Gupta 4GL http://www.sqlweb.vnuk.org/index.htm

 ##gup/index.htm##articles/oracnt.html

Westney, D. E. 1995. The knowledge-creating company - How Japanese companies

create the dynamics of innovation - Nonaka,I., Takeuchi,H., Sloan Management Review

36(4):100-101.

WinDev. 2011. http://www.windev.com/index.html

